

Introduction

- Cracks found on all orbiters fuel feedline bellows liner → fleet grounded
 - Near cleaning slots in liner
 - Cracks from 0.1" to 0.3" in length OV103, OV104, & OV105
 - Slot-to-slot cracks OV102
- JSC -> Three management teams
 - Representatives from MSFC
- Seven technical teams reporting to one of management teams
 - Participants from NASA (JSC, KSC & MSFC), Boeing, USA, & Arrowhead

Significant Activities to Pursue for Next (and subs) Flight

Fluid Physics & Dynamics

Marshall Space Blight Center

Significant Findings

- 3 different ducts on orbiter (Eng1, Eng2, Eng3)
- Lox & LH2 ducts are identical
- Orbiter duct cracks specific to LH2 duct*
- Cracks only in bellows liner closest to engine
- Cracks all originate at a liner slot
- Slots are stamped (leaving vertical indications)
- Cracks found after initial lox duct qual test series (attributed to over-test)
- After initial qual, liner redesigned & requalified
 Liner material: CRES 321 to INCO 718
 Number of slots: 76 slots to 38 slots
- OV102 & MPTA old design ... others new design
- Flight-type ducts not used on SSME single engine tests
- Reassed flight data & analyses says qual OK bellow 1000 Hz
- Analyzed material is OK without significant manufacturing defects (spare liners)
- Installation test showed no damaging strains
- By analysis

Pump excitations can excite liner modes with high stresses at all crack locations

Repair and Flight Qualification Work

- Repair method validated with coupon tests
- Orbiter liners repaired → weld cracks, grind and smooth
- Testing → single engine hotfire data 4" upstream of LPFP flange
- Modal tests of liners (air and water)
- Refined load analyses (vibrations, acoustics, flow)
- Failure analysis of cracks

* Only Eng 1 and Eng 2 found to have flowliner cracks

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

3

Elements of Cracking Analysis

Fluid Physics & Dynamic

Failure Analysis → LCF, HCF, overstress

2. Material Capability

Material properties in LH₂ at T and P

3. Loads → Static, dynamic, transient, flow, vibrations

Structural Model → Natural f's, mode shapes, stress, FSI, coupling

The evaluation of cracking mechanisms is accomplished through the four analysis elements listed above. To be credible, a postulated mechanism must have sufficient definition in terms of each of these elements. In most cases a conservative estimate with a significant variance is traded versus the investment in obtaining a detailed definition.

Fluid Driven Cracking Analysis

Fluid Physics & Dynamics

- Crack initiation and growth requires a driving mechanism or load
- HCF cracks at regular repeatable locations (pattern) could be caused by a driving mechanism that is coincident with a structural mode (resonance)
- There are three parts to investigating potential fluid driven cracking
 - 1. Compare potential load mechanisms to structural modes
 - Forced response ... periodic load and structure mode frequencies are not coincident
 - Random excitation ... structural mode excited by random amplitude forces
 - Resonance ... periodic load is coincident with structural mode frequency
 - 2. Determine changes in frequency of load and structure during launch vehicle ascent
 - Frequency coincidence may only occur during throttling
 - · Frequencies may coincide for limited parts of main stage
 - Frequencies may coincide for duration of main stage
 - Frequency coincidence may occur differently on each engine / vehicle combination
 - 3. Determine load and response patterns (spatial variation)
 - Structural mode should have highest stresses at crack location
 - Dynamic load should put energy into structural vibration
 - · Structural "lock-in" should be considered

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

-

Coordinated Effort

Fluid Physics & Dynamics

Liner Structural Modes

Fluid Physics & Dynamics

Marshall Space Flight Center

- \bullet The lowest frequency mode of the downstream flowliner is the 6^{th} diametral shown bellow
- This is because midway from the welded end the cantilevered cylindrical shell transitions to a smaller diameter
- \bullet The 6^{th} diametral mode puts high stresses at all of the crack locations

Hoop Dynamic Stress

Axial Dynamic Stress

FEM by ED21/ Frady

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

7

Bellows Structural Modes

Fluid Physics & Dynamic

Marshall Space Flight Center

FEM by ED21/ Frads

Structural Motion in a Fluid

 Measured - Dry Damping (% of Critical)

- Structural motion in liquid hydrogen will be reduced in frequency and magnitude compared to air
 The retarded motion is modeled using an added mass and an increased damping
- For the downstream fuel feedliner the frequency (above left) and damping (above right) change in water was predicted, then measured
- predicted, then measured

 The same model was used to predict the frequency change due to LH2 (right) and compared to water data scaled to LH2

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

9

Fluid Borne Drivers

Fluid Physics & Dynamics

Marshall Space Flight Center

3-D CFD

3D CFD (TD64/Dorney) provides pump backflow in line and also in Liner/ Bellows backing cavity. This shows amount of flow in and out of the slots and also the ΔP load on the liner. (this is a single phase flow analysis, i.e., no cavitation)

Instantaneous Static Pressure

3D CFD by TD64/ Domey

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

11

Fluid Borne Drivers from Pump

Rotating Cavitation Forcing Function 120 150 180 210 240 270 300 330 360

0 30 50 90 120 150 180 210 240 270 300 330 360 degrees traveled

Waveforms modeled by 11063/ Zolad: & Mulder

- Fluid Physics and Dynamics Group (T. Zoladz)
- Builds on MSFC cold flow legacy
- · Cavitation flow loads proved in water flow Mapped pump cavitation regimes
 - 3 wave theory
- · Predicted wave forms for flowliner loading above Wave forms calibrated using single engine data

Fruid Physics & Dynamics

Acoustic Modes Between Liner and Bellows

Effect of Cavitation on Acoustic Modes

Fluid FEM by TD63/ Cassano

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

13

Flow Parameter Mapping

- 330 Hz: rotating cavitation
- 25 Hz: auto-oscillation
- Characterized and mapped the 25 Hz response
- Cavitation instabilities have shown to map well

cavitation and incidence parameters

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

Flight Engine Flow Map

NSS vs. Q/N for the Last 15 Flights by TD61/ Rice

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

16

1

Summary / Conclusion

- Flow loads investigated as possible driver for cracks found in orbiter fuel feedliner
- Analysis shows that pump excitations can excite liner modes with high stresses at all crack locations.
- Three aspects of fluid driven cracking were investigated and it was found that
 - 1. Pump blade pass frequency is the only driving mechanisms that coincides with liner structural frequencies
 - The time and duration of frequency coincidence is not known due to changes in frequency of load during launch vehicle ascent and uncertainty in exact structural mode involved
 - 3. The lobed pattern from pump pulsations are most likely to excite a nodal diameter mode of the liner
- Ongoing testing should reveal information to improve hardware life estimates
 - Liner response mode (or modes)
 - Accuracy of liner delta p' estimate
 - Spatial p' mapping

MSFC Fluids Workshop, 11-19-02

Space Shuttle Fuel Feedliner Cracks Investigation

		·	